Introduction

Motivation:
e Robots often rely on sensors for obstacle detection.

e | everaging expert demonstrations without sensors can enhance robot

obstacle recognition in cases of obstacle occlusion.

e Enabling recognition of non-physical obstacles such as unsafe or non-

favorable regions in the environment.

Contributions:

e Modeling human behavior around obstacles: Learning o and ~y
using probabilistic model of expert demonstrations

e L earning position and radius of obstacles: x5 and 7
using all human demonstrations (including non-expert demos)

e Multiple obstacles estimation

Background:

e Control Lyapunov Function for stability assurance and Control Barrier

Functions for safety assurance, as constraints of a QP optimization
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(CLF — CBF — QP)

Data Construction

1. 2D optimization-based simulation

Trajectory with input constraints and cost for velocity and acceleration
using non-linear optimization from Drake

2. 2D human-like demonstrations with mouse
3. 2D and 3D real human demonstrations

Motion Capture system to record demonstrations
RGBD camera to create point clouds for environments and obstacles
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Methods

» Problem Assumptions

1. Obstacle shapes can be decomposed into multiple spheres.
2. Expert trajectories lead to a stable target without collision.

» Problem Formulation

Up = Lk+1 — Lk

Lyapunov function: V() = (2ygrget — )°
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Barrier function: h(x) = (x — Zlfobsmcle)Q — Tobstacle

a(h(z)) = ah(z) and ¥(V(z)) =7V ()
CLF-CBF-QP:
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Loss function:
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loss (Uestimateda udemo) = 1 — cos (uestimateda udemo)

» Step 1: Learning o and ~
Modeling human-like obstacle avoidance behavior
=» GMM-GMR* used to learn human-like trajectory around ob-
stacles from a few expert demonstrations
=» The resulting regression function used for x;. and wu;
=?» Obstacles known, o and « unknown
=¥ Explore « and ~ until Loss value converges.

» Step 2: Obstacle Estimation

=» All demonstrations data used for z; and wuy
=¥ a, v learnt in step 1, obstacles’ position ans size unknown

=» Explore obstacles until Loss value converges

* GMM-GMR: Trajectory modeling from expert demonstrations
GMM: Mixture of Gaussian Functions
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GMR: Regression function
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Results

» Step 1: Learning a and v

=» GMR Regression function from a few expert demonstrations

=¥ Explore o and 7y until convergence.

Real 2d Demonstrations, GMM, GMR
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» Step 2: Obstacle Estimation

=» All demonstrations data used as x;. and uy
=¥ Explore & pstacies and Topstacies Until convergence.

=¥ Evaluation Metric: Intersection over actual obstacles AQB

(A: Actual obstacles’ area, B: Predicted obstacles’ area)

Results for environment with one obstacle:

Evaluatlon metric over iterations
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Results for environment with multiple obstacles:

Loss over iterations
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