
Optimization-based Estimation of Environment Obstacles from Human Demonstration
Using Control Lyapunov Function and Control Barrier Functions

MEAM 5170 Final Project, Fall 2023

Shafagh Keyvanian
14493437

Ho Jin Choi
24661677

Minku Kim
27107660

Abstract—This project tackles the challenge of enabling a
sensor-free robot to identify obstacles based on expert demonstra-
tions. The proposed methodology utilizes the Control Lyapunov
Function (CLF), Control Barrier Function (CBF), and the CLF-
CBF-QP optimization algorithm to acquire knowledge about
obstacle position and size within an environment. The method
introduces two contributions: (a) modeling human behavior
around obstacles by probabilistically learning parameters α and
γ of the CLF-CBF-QP formulation from expert demonstrations,
and (b) learning the position and radius of obstacles (xobs and robs)
from all human demonstrations. The project assumes spherical
objects in the environment and stable target trajectories from
expert demonstrations.

I. INTRODUCTION

Navigation through complex environments with multiple ob-
stacles requires a sophisticated trajectory-planning approach.
Human planners, skilled in crafting smooth trajectories, take
into account various factors such as distance, effort, time,
and jerk. The intricate and subjective nature of human tra-
jectory planning highlights the necessity for an optimized
and adaptable imitation learning model. Our project addresses
this challenge by capturing the subjective essence of human
decision-making, with the goal of providing robots with both
adaptability and collision avoidance capabilities.

Our project contributes by modeling essential parameters
and learning obstacle properties, such as position and radius.
This approach enables the robot to identify and navigate
around multiple obstacles. Harnessing the capabilities of the
Control Lyapunov Function (CLF) and Control Barrier Func-
tion (CBF), in conjunction with the CLF-CBF-QP formula-
tion, our methodology establishes a framework for obstacle
estimation without relying on perception, which can be used
for learning human preference or non-physical obstacles.

A. GMM and GMR Formulation

The applications of the Gaussian Mixture Model (GMM)
and Gaussian Mixture Regression (GMR) [1, 2] are employed
for modeling human-like trajectories around obstacles. GMM
represents a probabilistic model by expressing the scattered-
ness of the data points as a weighted summation of Gaussian
components. Using this approach for modeling the acquired
data, the discrepancies of the demonstrations can be accounted
for as the covariance of the Gaussian kernels in GMM, and the
most optimal trajectorycan be derived out of the given demon-
strations using GMR. In GMR, as opposed to GMM where
all dimensions of the dataset is considered to be probabilistic,

a subset of data dimensions are considered deterministic to
calculate what would be the most probable (expected) value
for the probabilistic dimensions. This means that after fitting
a GMM over the collected dataset for demonstrations in two
dimensions of X and Y , by knowing the value of X , what
would be the most expected Y value achieved from the GMM.

The probability density function of GMM of a 2-D dataset
would be written as the following:

P
([

x
y

])
=

K∑
k=1

πkN
([

x
y

]
,

[
µk,x

µk,y

]
,

[
Σk,x Σk,xy

Σk,yx Σk,y

])
subject to:

K∑
k=1

πk = 1

where K is the number of Gaussian clusters in the GMM, πk

is the weight of the kth Gaussian cluster, µk is the associated
mean vector and Σk is the associated positive-semi-definite
covariance matrix.

After fitting the GMM onto the dataset, we are left with
a weight (π), mean vector (µ), and a covariance matrix (Σ)
for each of the Gaussian clusters of the GMM. Then the most
probable y values, knowing x values of the dataset, can be
derived using the following equations of GMR:

y(x) =

K∑
k=1

βk(µk,y +Σk,yx(Σk,x)
−1(x− µk,x))

subject to:

βk =
πkN (x, µx,k,Σx,k)∑K
i=1 πiN (x, µx,i,Σx,i)

These techniques enable the project to learn and replicate
human-like trajectories around obstacles from expert demon-
strations, providing a foundation for subsequent steps in the
methodology.

B. CLF-CBF-QP

Control Lyapunov Function (CLF) and Control Barrier
Function (CBF) establish a theoretical basis for devising
control strategies that guarantee stability and obstacle avoid-
ance in robotic systems [3]. The CLF-CBF-QP formulation
integrates these functions into a quadratic program, generating
instantaneous control inputs for each state to ensure stability



and safety. In this project, the emphasis is on utilizing this con-
trol methodology to empower a robot to recognize obstacles
through expert demonstrations and navigate an environment
using predictions about obstacles.

u(x) = argmin
u,δ

1

2
uTH(x)u+ pδ2 (CLF − CBF − QP)

s.t. LfV (x) + LgV (x)u ≤ −γ(V (x)) + δ

Lfh(x) + Lgh(x)u ≥ −α(h(x))

II. METHODOLOGY

A. Problem Formulation:

Problem Assumptions:
• Expert trajectories lead to a stable target without collision,

following the CLF-CBF-QP formulation.
• Obstacle shapes can be decomposed into multiple

spheres, creating multiple CBF constraints.
• No dynamic constraint:

uk = xk+1 − xk (x ∈ Rm) for k = 1, 2, ..., T − 1 where
T is the last time step of a trajectory

• Lyapunov function:
V (x) = (xtarget − x)2 where xtarget is the target state.

• Barrier function:
h(x) = (x − xobs)

2 − r2obs where xobs and robs are the
obstacle’s position and the radius.

• α and γ functions are positive linear functions:
α(h(x)) = αh(x) and γ(V (x)) = γV (x)

• H(x) = I

The CLF-CBF-QP formulation is utilized to estimate the
velocity input, uk,est, which is then compared with the demon-
strated velocities, uk.

uk,est =argmin
u,δ

∥u∥22 + pδ2

s.t. 2(xtarget − xk)u ≤ −γ(xtarget − xk)
2 + δ

2(xk − xobs,i)u ≥ −α((xk − xobs,i)
2 − r2obs,i)

for i = 1, 2, ..., N where N is the number of obstacles. Here,
differentiable QP is employed to obtain gradients with respect
to the obstacle’s position and radius [4]. The cost or loss
function is defined as

Loss:
1

T − 1

T−1∑
k=1

(
1− uk · uk,est

∥uk∥2∥uk,est∥2

)
Since CLF-CBF-QP can be formulated for each state and the
corresponding target, the learning process of obstacles does
not have to rely on a single trajectory but can be derived
from multiple trajectories with different targets in the same
environment. Therefore, T − 1 is adjusted to represent the
number of data points. The rationale behind the loss function is
to position obstacles in a way that generates repulsive forces,
altering the direction of the vector field. To capture this, a
cosine similarity loss is employed instead of a mean squared
error. Additionally, given the knowledge that demonstrated

trajectories avoid collisions with obstacles, soft constraints are
incorporated into the loss as follows:

−ReLU(−(∥xk − xobs,i∥2 − robs,i))

for i = 1, 2, ..., N and k = 1, 2, ..., T . While manual calcu-
lation of gradients is possible, the project leverages the auto-
differentiation feature of PyTorch for this purpose.

B. Project Steps:

Step 1: Learning α and γ: Modeling Human-like Obstacle
Avoidance Behavior

1) Employ GMM-GMR to model human-like trajectories
around obstacles based on expert demonstrations.

2) Apply the CLF-CBF-QP formula with initial assump-
tions for α and γ to estimate velocities (u).

3) Compute the loss by comparing estimated velocities with
known velocities.

4) Iteratively refine α and γ until convergence.
Step 2: Obstacle Estimation
1) Utilize all demonstration data (expert and non-expert) to

extract position (xk) and velocity (uk) information.
2) Implement the CBF-CLF-QP optimization algorithm to

estimate uk while ensuring collision avoidance.
3) Formulate a loss function by comparing estimated ve-

locities with actual velocities.
4) Adjust xobs and robs, and iterate until convergence.

This two-step methodology allows the robot to identify ob-
stacles, emulate human-like behavior, and estimate obstacle
properties either independently or in conjunction with sen-
sors. It offers an approach for robot navigation in cluttered
environments, showcasing the potential for effective obstacle
recognition and avoidance.

C. Evaluation Metric for 2D case

A robust criterion for evaluating the accuracy of estimated
obstacles compared to real obstacles is the Intersection over
Union (IoU), which quantifies the degree of overlap between
estimated and real obstacles. Another metric is the Intersection
over Ground Truth (IoGT), a conservative measure allowing
for more estimated obstacles than the actual ones. While
measuring these metrics is straightforward when the number
of obstacles is known, challenges arise when their numbers
are unknown or establishing direct correspondence is difficult.
For the 2D case, both predicted and real obstacles are rendered
into pixel masks, and the number of pixels is calculated to
determine intersection or union. Given Aobs and Aobs,est as
the 2D areas occupied by real and estimated obstacles, the
evaluated measures include:

IoU:
Aobs ∩Aobs,est

Aobs ∪Aobs,est
, IoGT:

Aobs

Aobs ∪Aobs,est

III. DATA CONSTRUCTION

To generate expert trajectories, we design three distinct
scenarios, each characterized by unique behaviors and cor-
responding α and γ parameters.



Fig. 1. Example of a 2D simulated
demonstration (Red: demonstrated tra-
jectories, Black: obstacles)

Fig. 2. Example of a 3D demonstration (Red:
demonstrated trajectories, Black: table, Coordi-
nate frame: target, Others: obstacles)

Fig. 3. Example of a 3D demonstration (Red: demonstrated
trajectories, Black: table, Coordinate frame: target, Others:
obstacles)

A. 2D optimization-based simulation

We employ non-linear optimization-based trajectory genera-
tion with input constraints and cost considerations for velocity
and acceleration using the Drake framework. Each trajectory
generation is initialized with randomly placed obstacles, two
distinct targets, and sampled trajectories that are unique for
the same environment, as illustrated in Figure 1. Given the
non-linear nature of the optimization, it produces several non-
optimal trajectories, serving as suboptimal demonstrations.

B. 2D human-like demonstrations with mouse

We construct a 2D environment featuring obstacles of vary-
ing radii and generate demonstrations using a mouse interface,
as depicted in Figure 2.

C. 2D and 3D real human demonstrations

We position sphere-like obstacles on a table, which is
captured by an RGBD camera and processed using the SLAM
algorithm RTAB-Map [5] to obtain point clouds representing
the table, as illustrated in Figure 3. Subsequently, we apply
RANSAC to identify both the table and the obstacles. To
capture demonstration trajectories, we utilize the Optitrack
motion tracking system, calibrated with the RGBD camera,
to track the position in 3D. We also assess its relative position
concerning the target.

IV. RESULTS

A. Learning α and γ from expert demonstrations

1) 2D human-like demonstrations with mouse: Ten mouse
trials are conducted for obstacles of ten different radii.
In each trial, three demonstrations are presented, and
the GMM-GMR algorithm is employed to derive the re-
gression function, as depicted in Figure 4. Subsequently,
the data points of the regression function are utilized to
learn the α and γ constants, with the obstacle position
and radius being known. The learned values for α and
γ for each trial are documented in Table 1.

2) 2D real human demonstrations: The actual demonstra-
tions utilized for learning α and γ are derived from two
planar trials, each featuring a single obstacle. Figure 5
illustrates the three demonstrations for each trial, along

Fig. 4. GMM-GMR results for robs = 0.25, 0.5, 1, 2.25 (top-left to bottom-
right)

Fig. 5. GMM-GMR results for robs = 0.0.0657, 0.0525

with the GMM kernels and the GMR function. The re-
sulting α and γ values for the real human demonstrations
are reported in Table 2.

B. Learning obstacles properties from learned α and γ

We leverage the α and γ parameters that were obtained from
the demonstrations in the previous section to acquire the posi-
tion and radius of the obstacle(s) in the real 2D demonstration
environment. In Figure 6, we present a visual representation
of the 2D environment, illustrating the visualized results of
the learned obstacle positions and radii alongside the evolving
loss and metric across iterations. The α and γ parameters used
in each 2D environment are α = [0.1751, 0.2390, 0.0178] and
γ = [0.1416, 0.1003, 0.2811] respectively.



TABLE I
α AND γ FOR 2D MOUSE DEMONSTRATIONS

robs α γ Loss

Row 1 0.25 0.121 0.0163 0.0402
Row 2 0.5 0.0992 0.0221 0.036688
Row 3 0.75 0.743 0.01 0.06389
Row 4 1 0.0985 0.0212 0.044818
Row 5 1.25 0.0907 0.03 0.059265
Row 6 1.5 0.0754 0.0299 0.044088
Row 7 1.75 0.0682 0.0221 0.066847
Row 8 2 0.0773 0.029 0.080959
Row 9 2.25 0.0741 0.0269 0.059892

TABLE II
α AND γ FOR 2D REAL DEMONSTRATIONS

robs α γ Loss

Row 1 0.0525 0.239 0.1003 0.048046
Row 2 0.0666 0.1751 0.1416 0.048615

V. DISCUSSION AND FUTURE WORK

From the results presented earlier in this report, the follow-
ing observations were made:

1) Variability of α: As evident in Table 1, the α variable
exhibits variation with changes in obstacle size. This
suggests the need for formulating α as a function of
robs or alternatively as a function of the barrier function
h(x) rather than a constant value, as also discussed in
[3]. Additionally, there’s an intuitive belief that α might
be a function of ḣ(x), considering that individuals tend
to exercise more caution in avoiding obstacles when
moving at higher speeds.

2) Estimation of Additional Obstacles: In scenarios with
only one obstacle in the environment, the algorithm
tends to estimate additional obstacles to justify curved
trajectories close to the start point and target. This
behavior may be attributed to the fact that during
demonstrations, the demonstrator aimed to reach the
target in a horizontal orientation. To address this, further
experiments will be designed to analyze and understand
this behavior or dynamic model. One potential solution
for planar experiments is to model human dynamics
while considering the yaw angle of the motion as an
additional state, akin to a unicycle.

REFERENCES

[1] Emmanuel Pignat and Sylvain Calinon. “Bayesian Gaus-
sian mixture model for robotic policy imitation”. In:
IEEE Robotics and Automation Letters 4.4 (2019),
pp. 4452–4458.

[2] S Mohammad Khansari-Zadeh and Aude Billard. “Learn-
ing stable nonlinear dynamical systems with gaussian
mixture models”. In: IEEE Transactions on Robotics 27.5
(2011), pp. 943–957.

Fig. 6. Plot of predicted obstacle(s) and Loss / Metric across iterations

[3] A. Ames et al. “Control Barrier Functions: Theory and
Applications”. In: 2019 18th European Control Confer-
ence (ECC) (2019), pp. 3420–3431. URL: https : / / api .
semanticscholar.org/CorpusID:85530121.

[4] Brandon Amos and J. Zico Kolter. “OptNet: Differen-
tiable Optimization as a Layer in Neural Networks”. In:
International Conference on Machine Learning. 2017.
URL: https://api.semanticscholar.org/CorpusID:1791473.

[5] Mathieu Labbé. “RTAB-Map as an Open-Source Lidar
and Visual SLAM Library for Large-Scale and Long-
Term Online Operation”. In: 2018. URL: https : / / api .
semanticscholar.org/CorpusID:209527025.


